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Adaptive Selection of Base Classifiers in
One-Against-All Learning for Large
Multi-labeled Collections

Arturo Montejo Réez!, Lufs Alfonso Urefia Lépez?, and Ralf Steinberger®

! BEuropean Laboratory for Nuclear Research, Geneva, Switzerland
2 Department of Computer Science, University of Jaén, Spain
3 European Commission, Joint Research Centre, Ispra, Italy

Abstract. In this paper we present the problem found when studying
an automated text categorization system for a collection of High En-
ergy Physics (HEP) papers, which shows a very large number of possible
classes (over 1,000) with highly imbalanced distribution. The collection
is introduced to the scientific community and its imbalance is studied
applying a new indicator: the inner imbalance degree. The one-against-
all approach is used to perform multi-label assignment using Support
Vector Machines. Over-weighting of positive samples and S-Cut thresh-
olding is compared to an approach to automatically select a classifier for
each class from a set of candidates. We also found that it is possible to
reduce computational cost of the classification task by discarding classes
for which classifiers cannot be trained successfully.

1 Introduction

The automatic assignment of keywords to documents using full-text data is a
subtask of Text Categorization, a growing area where Information Retrieval tech-
niques and Machine Learning algorithms meet offering solutions to problems
with real world collections.

We can distinguish three paradigms in text categorization: the binary case,
the multi-class case and the multi-label case. In the binary case a sample either
belongs or does not belong to one of two given classes. In the multi-class case a
sample belongs to just one of a set of m classes. Finally, in the multi-label case,
a sample may belong to several classes at the same time, that is, classes are
overlapped. In binary classification a classifier is trained, by means of supervised
algorithms, to assign a sample document to one of two possible sets. These sets
are usually referred to as belonging (positive) or not belonging (negative) samples
respectively (the one-against-all approach), or to two disjoint classes (the one-

'aga.mst—one approach). For these two binary classification tasks we can select

among a wide range of algorithms, including Naive Bayes, Linear Regression,
Support Vector Machines (SVM) [8] and LVQ [11). SVM has been reported to
‘qutperform the other algorithms. The binary case has been set as a base case from
‘Wwhich the two other cases are derived. In multi-class and multi-label assignment,

J. L. Vicedo et al. (Eds.): EsTAL 2004, LNAI 3230, pp. 1-12, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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the traditional approach consists of training a binary classifier for each class,
and then, whenever the binary base case returns a measure of confidence on
the classification, assigning either the top ranked one (multi-class assignment)
or a given number of the top ranked ones (multi-label assignment). More details
about these three paradigms can be found in [1]). We will refer to the ranking
approach as the battery strategy because inter-dependency is not taken into
consideration.

Another approach for multi-labeling consists of returning all those classes
whose binary classifiers provide a positive answer for the sample. It has the
advantage of allowing different binary classifiers for each class, since inter-class
scores do not need to be coherent (since there is no ranking afterwards). Better
results have been reported when applying one-against-one in multi-class classi-
fication [1], but in our multi-label case this is not an option because any class
could theoretically appear together with any other class, making it difficult to
establish disjoint assignments. This is the reason why one-against-all deserves
our attention in the present work.

Although classification is subject to intense research (see [18]), some issues
demand more attention than they have been given so far. In particular, problems
relating to multi-label classification would require more attention. However, due
to the lack of available resources (mainly multi-labeled document collections),
this area advances more slowly than others. Furthermore, multi-label assignment
should not simply be studied as a general multi-class problem (which itself is
rather different from the binary case), but it needs to be considered as a special
case with additional requirements. For instance, in multi-label cases, some classes
are inter-related, the degree of imbalance is usually radically different from one
class to the next and, from a performance point of view, the need of comparing
a sample to every single classifier is a waste of resources.

2 The Class Imbalance Problem

Usually, multi-labeled collections make use of a wide variety of classes, resulting
in an unequal distribution of classes throughout the collection and a high number
of rare classes. This means not only that there is a strong imbalance between
positive and negative samples, but also that some classes are used much more
frequently than other classes. This phenomenon, known as the class imbalance
problem, is especially relevant for algorithms like the C4.5 classification tree [4,
3] and margin-based classifiers like SVM (16, 20, 7].

Extensive studies have been carried out on this subject as reported by Jap-
kowicz [7], identifying three major issues in the class imbalance problem: concept
complezity, training set size and degree of imbalance. Concept complexity refers
to the degree of “sparsity” of a certain class in the feature space (the space
where document vectors are represented). This means that a hypothetical clus-
tering algorithm acting on a class with high concept complexity would establish
many small clusters for the same class. Regarding the second issue, i.e. the lack
of a significantly large training sets, the only possible remedy is the usage of
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over-sampling when the amount of available samples is insufficient, and under-
sampling techniques for classes with too many samples, e.g. just using a limited
number of samples for training a SVM, by selecting those positive and negative
samples that are close to each other in the feature space. The validity of these
techniques is also subject to debate [4]. Finally, Japkowicz defines the degree of
imbalance as an index to indicate how much a class is more represented over
another, including both the degree of imbalance between classes (what we call
inter-class imbalance) and between its positive and negative samples (what we
call the inner imbalance degree). Unfortunately, Japkowicz defined these values
for her work towards the generation of an artificial collection and rewrote them
later to fit specific problems regarding fixed parameters and the C5.0 algorithm,
which make them difficult to manipulate. For these reasons, we cannot reuse her
equations and propose here a variant focusing on the multi-label case.

We define the inner imbalance degree of a certain class ¢ as a measure of the
positive samples over the total of samples:

i,‘ = }1 - 2711'/’",] (1)
where

n is the total number of samples and
n; is the total number of samples having the class i in their labels.

Japkowicz’ definition of imbalance degree

helps in the generation of artificial distribu-

Imtence dagres fanction tions of documents to classes. Its value does
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difficult to manipulate and compare with the
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The value proposed in equation 1 is zero for
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linear behavior is shown in figure 1 and, as
we can see, it varies within the range [0,1].

3 The HEP Collection

A very suitable document set for multi-label categorization research is the HEP
collection of preprints, available from the European Laboratory for Nuclear Re-
search. Some experiments have been carried out using this collection ([13,12]),
and its interesting distribution of classes allows us to carry out a number of ex-
periments and to design a new approach. An analysis of the collection has shown
that there is the typical high level of imbalance among classes. If a given class
is rarely represented in a collection, we can intuitively foresee a biased training
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that will yield classifiers with a low performance. It is clear that, if the collection
were perfectly balanced, we could expect better categorization results, due to
better learning.

The hep-ex partition of the HEP collection is composed of 2802 abstracts
related to experimental high-energy physics that are indexed with 1093 main

keywords (the categories).! Figure 2 shows the distribution of keywords across
the collection.

i- i
| -
L) ¥ -
L] ] - ; - - e
(a) All classes (b) 100 most frequent

Fig. 2. Distribution of classes across documents in the hep-ex partition

As we can see, this parti- Table 1. The ten most frequent main keywords
tion is very imbalanced: only 84 in the hep-ex partition
classes are represented by more
than 100 samples and only five No. docs.

Keyword
classes by more than 1000. The 1898 (67%)lelectron positron
uneven use is particularly no- 1739 (62%)|experimental results
ticeable for the ten most fre- 1478 (52%)|magnetic detector
quent keywords: In table 1 the 1190 (42%)|quark
left column shows the number 1113 (39%) talk
of positive samples of a keyword 715 (25%)\Z0 )

R 676 (24%)|anti-p p
and the right column shows .
551 (19%)|neutrino

the percentage over the total of 463 (16%){W
samples in the collection. 458 (16%) jet ]

We can now study this col-
lection applying the inner im-
balance degree measure defined
in equation 1. The two graphs in figures 3a and 3b show the inner imbalance
degree for the main keywords in the hep-ex partition. We can notice how fast

! We did not consider the keywords related to reaction and energy because they are

based on formulae and other specific data that is not easily identifiable in the plain-
text version of a paper.
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A(_:laptive Selection of Base Classifiers

the imbalance grows to a total imbalance degree of almost 1. When looking at
the ten most frequent classes, we can see the effect of our degree estimation:
classes 0 and 1 are more imbalanced than class 2, which gets the lowest degree
of imbalance in the whole set of classes. It is due to the fact that, as shown by
table 1, this class has almost the same number of positive and negative samples.
From class 3 onwards, the imbalance then grows dramatically.

E &8 ¢t & E & E E .

e - ke . e "
o ot L] L] Taoe L L] 4 L] . ]

(a) All classes (b) Ten most frequent

Fig. 3. Imbalance degree of classes in the hep-ex partition

When training binary classifiers for these keywords, we realized that the
performance decreases strongly with growing imbalance degree. To correct doc-
ument distribution across classes, we can use over-sampling (or under-sampling)
or tune our classifiers accordingly. For example, for SVM we can set a cost fac-
tor, by which training errors on positive samples out-weights errors on negative
samples [14]. We will use this in our experiments.

4 Balance Weighting and Classifier Filtering

Some algorithms work better when, in the one-against-all approach, the number
of positive samples is similar to the number of negative ones, i.e. when the class
is balanced across the collection. However, multi-label collections are typically
highly imbalanced. This is true for the HEP collection, but also for other known
document sets like the OHSUMED medical collection used in the filtering track of
TREC (5], and for the document collection of the European Institutions classified
according to the EUROVOC thesaurus. This latter collection has been studied
extensively for automatic indexing by Pouliquen et. al. (e.g. [2]), who exploit a
variety of parameters in their attempt to determine whether some terms refer to

‘one class or to another in the multi-labeled set.

The question now is how to deal with these collections when trying to apply
binary learners that are sensitive to high imbalance degrees. We can use tech-
niques like over-sampling and under-sampling, as pointed out earlier, but this
would lead to an overload of non-informational samples in the former case, and
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to the loss of information in the second case. Furthermore
ity has also its effects on binary classifiers. We have not
fact since it is out of the scope of the present study,
this to be yet another drawback for collections indexed
non-balanced classes.

In our experiments we basically train a system using the battery strategy, but
(a), we allow tuning the binary classifier for a given class by a balance factor,

» concept complex-
paid attention to thig
but we should consider
with a large number of

classifier performs badl , We discard the classifier and the cl
doing this, we may decrease the recall slightly (since less classes get trained and
assigned), but the advantages of increased computational performance and of
higher precision compensate for it. The effect is similar to that of the SCutFBR
proposed by Yang [21). We never attempt to return a positive answer for rare
classes. In the following, we show how this filtering saves us considering many
classes without significant loss in performance.
We allow over-weighted positive samples using the actual fraction of positive
samples over negative ones, that is, the weight for positive samples (w, ) is:

wy =C_/C, (2)

where

C_ is the total number of negative samples for the class
C, is the total number of positive samples for the class

(14] but they did not report how much it improved the performance of the
classifier over the non-weighted scheme. As we said, this w, factor was used
in our experiments to over-weight positive samples over negative ones, i.e. the
classification error on a positive sample is higher than that of a negative one.
We also considered the S-Cut approach. The assignation of a sample as pos-
itive can be tuned by specifying the decision border. By default it is zero, but
it can be set using the S-Cut algorithm [21]. This algorithm uses as threshold
the one that gives the best performance on an evaluation set. That is, once the
classifier has been trained, we apply it against an evaluation set using as possible
thresholds the classification values (the margin for SVM). The threshold that
reported the best performance (the highest F1 in our case) will be used.

SR

puts o k
Inpa set ‘of multi-labeled -
a set of validation doc
.- a threshold « on the e
.. a set of possible label
a set of candidate bin:
Qutput : v
“aset C' = {c1,..., Ck, -
Pseudo code:
=0 h
* for-each l; in L do
T =9 :
% for-each ¢j in C do
train-classifier(c
T=TU {CJ'}
end-for-each
Cheat = best-classifi
if evaluate-classifies
C’ = C, U {cbest
end-if

end-for-each

Fig. 4. The one-:
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Input:
a set of multi-labeled training documents D,
a set of validation documents D,
a threshold « on the evaluation measure
a set of possible label (classes) L,
a set of candidate binary classifiers C

Output :
aset C' = {c1, ..., Ck, ..., C | } of trained binary classifiers
Pseudo code:
Cc'=90
for-each l; in L do
T=0

for-each ¢; in C do
train-classifier(c;, li, Dt)
T=TuU {Cj}

end-for-each

Chest = best-classifier(T, D)

if evaluate-classifier(Cpest) > @
c'=Cc'u {Cbeat}

end-if

end-for-each

Fig. 4. The one-against-all learning algorithm with classifier filtering

5 Experiments and Results

5.1 Data Preparation

The collection consists of 2967 full-text abstracts linked to 1103 main keywords.
Each abstract was processed as follows:

— Punctuation was removed

— Every character was lowercased

— Stop words were removed

‘= The Porter stemming algorithm [15] was applied

— Resulting stems were weighted according to the TF.IDF scheme [17]

After processing the collection in this way, we trained the system applying
each strategy using the SVM-Light? package as the base binary classifier. We
also filtered out classes not appearing in any document either in the training,
Ya]idat_ion or test sets, reducing the number of classes to 443.8 on average. Results
are shown at the end of this section.

. For the evaluation in experiments, ten-fold cross validation [9] was used
in order to produce statistically relevant results that do not depend on the

2 - . .
*-SVM-Light is available at http://svmlight.joachims.org/
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partitioning of the collection into training, validation and test sets. Extensive
experiments have shown that this is the best choice to get an accurate estimate.
The measures computed are precision and recall. The F; measure (introduced
by Rijsbergen [19] a long time ago) is used as an overall indicator based on the
two former ones and is the reference when filtering is applied. Also accuracy
and error measurements are given for later discussion. The final values are com-
puted using macro-averaging on a per-document basis, rather than the usual
micro-averaging over classes. The reason is, again, the high imbalance in the
collection. If we average by class, rare classes will influence the result as much
as the most frequent ones, which will not provide a good estimate of the perfor-
mance of the multi-label classifier over documents. Since the goal of this system
is to be used for automated classification of individual documents, we consider
it to be far more useful to concentrate on these measurements for our evaluation

of the system. More details about these concepts can be found in [18], [10] and
[22].

5.2 Results

Table 2 shows the results of ten runs of our multi-label classifier with different
configurations. The highest values of F; are reached when letting the system
choose among fixed values for over-weighting positive samples (2, 5, 10 and 20).

These are the results when applying the algorithm of figure 4 with a = 0.0, i.e.
no filtering over classifiers is done.

Table 2. Results of experiments using SVM

Experiment Precision|Recall] F1|Accuracy|Error[% of classes covered
No weight 74.07} 33.96| 43.92 98.23| 1.77 33.96
No weight / Scut 74.26| 34.44| 44.38 98.24| 1.76 99.95
Overweight 20 51.47(45.84| 46.50 97.71| 2.29 57.32
Auto weight 58.10| 44.39| 48.09 97.94| 2.06 58.09
Overw. 2,5,10,20 / Scut 71.74] 39.92| 48.47 98.25] 1.75 100.00
Auto weight / Scut 58.03} 45.30| 48.56 97.89} 2.11 99.82
Overweight 2 70.741 40.45] 48.78 98.21] 1.79 53.36
Overweight 5 64.56] 43.57} 49.40 98.11} 1.89 57.19
Overweight 10 62.30] 45.22 50.14 98.08| 1.92 57.30
Overw. 2,5,10,20 65.89] 44.59|50.53 98.17| 1.83 57.53

We see that the top recall reached does not imply having more classes trained.
Therefore we may want to study how we can reduce the number of classes trained
to speed up the classification process without loosing too much in performance.

For that purpose, we experimented with different values of , as shown in tables
3 and 4.

]
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Table 3. Results of experiments using multi-weighted SVM with filtering

a 00 01} 0.2} 0.3] 04 05 0.6 0.7]
Precision 65.80( 70.0470.41/70.8871.90]71.96(71.02[67 .06
Recall 44.58) 44.49)43.95|42.95|40.54(36.65(31.80(23.02
31 S0.53(51.59|51.32)50.77/49.2146.11|41.70(32 83
Accuracy B5.17) D8.25198.25/98.25(98.24|98. 21 [98.15(98.03
Error 1.83) 1.75| 1.¥6| 1.75 1.76 1.7%| 1.85| 1.97
% classes trained|57.53| 56.49 5[].81|43.20| 32.73|23.23{16.00| 8.58

Table 4. Results of experiments using auto-weighted S-Cut thresholded SVM with
filtering

a 0.0 0.1] 0.2] 03| 04| 0.5/ 06| 0.7
Precision 58.03|62.47|64.84/67.45|69.47(71.19(71.14(68.24
Recall 45.30145.04|44.83|44.24|42.76|39.59(34.43]|24.88
31 48.56|49.93|50.47]50.75(50.27(48.37(44.10|34.76
Accuracy 97.89/98.06(98.14/98.20]98.23|98.22(98.17(98.05
Error 2.11| 1.94| 1.86| 1.80| 1.77| 1.78| 1.83] 1.95
% classes trained|99.82(85.30|77.10(68.47|55.74|42.34/30.82|16.72

5.3  Analysis

Interesting conclusions can be drawn from the tables above. The first thing we
notice is that recall is low compared to precision. This is normal if we consider the
existence of rare and, therefore, difficult-to-train classes. When tuning our multi-
label classifier, we see that variations in precision are more representative than for
recall. The F; measure remains quite stable: throughout all the experiments with
different configurations, the most we gain is 6.61%. However, a very important
result is that, even when some configurations are able to train up to 100% of the
total of classes involved (we can see how the percentage of classes successfully
trained varies widely), it does not influence that much the overall performance
of the classifier. We can conclude that rare classes are not worth training. This
is the reason for the design of our filtering algorithm. Furthermore, it is not clear
that S-Cut and auto-weighting strategies are so relevant for our data. As we can
also notice, accuracy and error are not very sensitive to the variations of our
parameters, but this is again due to imbalance: most of the classes are rare and
for the most frequent ones we get high precision and recall, even with not very
sophisticated configurations.

When discarding classes, we obviously gain in precision and, despite more
classes not being trained, we do not lose that much in recall. The result is a
better Fy' than without discarding, as shown by F1 values in 2 compared to
those of tables 3 and 4. We can see how strongly we can reduce the number of
classes without affecting significantly the overall performance of the multi-label
classifier. Figures 5a and 5b visualize the behavior described. The bigger our o
is, the more classes are discarded. From all the test runs, the best value of Fi was
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Fig. 5. Influence of filtering on (a) multi-weighted SVM and (b) auto-weighted with
S-cut thresholding

obtained with an a value of 0.1 and using candidate classifiers with over-weights
2, 5, 10 and 20 for positive classes. From the graphs we can see that increasing
a yields to a higher precision up to a maximum from which the threshold will
be so restrictive that even good classifiers are discarding and, therefore, the
precision starts to decrease accordingly. Thus, our choice of a will depend on
our preference of precision over recall and our need of reducing classes for faster
classification. If we are able to discard non-relevant (rarely used) classes, we can
almost maintain our performance classifying against a lower number of classes.

6 Conclusions and Future Work

We have presented a new collection for multi-label indexing. The hep-ex par-
tition can be obtained by contacting the authors. A calculus for measuring the
imbalance degree has been proposed, along with a study of the overweight of
positive classes on this collection using SVM and the application of S-Cut. The
results show that this is a relevant issue, and that an imbalance study of any
multi-label collection should be carried out in order to properly select the base
binary classifiers. Another promising issue would be to work on other aspects of
imbalance like concept complexity [6]. We have started investigating this topic
by working with “concepts” rather than with terms in order to reduce the term
space. By doing this, we would cover the main drawbacks of imbalanced collec-
tions.

Filtering by classification thresholding is very effective to reduce the number
of classes involved in multi-label classification. Without forcing expensive tuning
of the threshold, we propose to provide a range of & values and let the algorithm
choose the classifier with the best behavior.

One of the disadvantages using the battery approach is its computational
cost, since we have to launch every classifier for a sample. However, SVM is
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quite selective, not being trainable in many cases, discarding in this way many
conflictive classes. This reduces the computation without loosing too much in
performance. We have shown that, by increasing the selectivity, we can even gain
significantly in precision without loosing too much in recall.
One multi-label collection issue we have not considered is inter-class depen-
dency. In some preliminary analysis we found that the correlation among classes
is relevant enough to be considered. We could actually benefit from such a cor-
relation to speed up the classification process, by discarding those classes not
correlated to the ones we have already found relevant. This relation could proba-
bly be used to fight one of the drawbacks found: our recall is very low compared
to the precision. If we were able to select those classes that are highly correlated
with classes assigned with high precision, we might gain in recall. This will need
further investigation. |
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