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Using linguistic information
as features for text categorization

Arturo MONTEJO-RAEZ !, Luis Alfonso URENA-LOPEZ,
Miguel Angel GARCIA-CUMBRERAS and José Manuel PEREA-ORTEGA

University of Jaén, Spain

Abstract. We report on some experiments using linguistic information as addi-
tional features as part of document representation. The use of linguistic features on
several information retrieval and text mining tasks is a hot topic, due to the polarity
of conclusions encountered by several researchers. In this work, extracted informa-
tion of every word like the Part Of Speech, stem and morphological root have been
combined in different ways for experimenting on a possible improvement in the
classification performance and on several algorithms. Our results show that certain
gain can be obtained when these varied features are combined in a certain man-
ner, and that these results are independent from the set of classification algorithms
applied or the evaluation paradigm chosen, providing certain consistency to our
conclusions in text categorization on the Reuters-21578 collection.
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ure 1 £08 We report on some experiments using linguistic information as additional features in a

iificantly classical Vector Space Model [1]. Extracted information of every word like the Part Of

p a clus- Speech and stem, morphological root have been combined in different ways for exper-

‘ms tex@ imenting on a possible improvement in the classification performance and on several
algorithms, like SVM[2], BBR[3] and PLAUM.

ing data The inclusion of certain linguistic features as additional data within the document

ic stance model is being a subject of debate due to the variety of conclusions reached. This work

Ids. exposes the behavior of a text categorization system when some of these features are
integrated. Our results raise several open issues that should be further studied in order to
get more consistent conclusions on the subject. Linguistic features may be useful or not
depending on the task, the language domain, or the size of the collection. Nevertheless,
we focus here on a very specific aspect: the way we combine features is also crucial for

.D. thesis, testing its effectiveness.

847, 2007. Automatic Text Classification (TC), or Automatic Text Categorization as it is also

i’o";;e' :‘:;’;5 known, tries to relate documents to predefined set of classes. Extensive research has been

carried out on this subject [4] and a wide range of techniques are applicable to solve
this task: feature extraction [5], feature weighting, dimensionality reduction [6], machine

]Corresponding Author: Universidad de Jaén, Jaén 23071, Spain; E-mail: amontejo @ujaen.es.
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learning algorithms and more. Besides, the classification task can be either binary (one
out of two possible classes to select), multi-class (one out of a set of possible classes)
or multi-label (a set of classes from a larger set of potential candidates). In most cases,
the latter two can be reduced to binary decisions [7], as the algorithm used does in our
experiments [8]. This is the reason why machine learning algorithms have been playing
a central role in TC.

In order to do machine learning when dealing with documents, a proper representa-
tion of the document has to be built. So far, the most common strategy is to follow the
bag of words approach, where words from the document are extracted, transformed in
some way and then weighted according to their frequency of use within the document. In
this manner, documents are represented as vectors, where each dimension corresponds
to the weight of a given term (i.e. a lemmatized word or a multi-word mainly) in the
document.

Due to the large amount of terms within any vocabulary, reduction strategies must
be applied in order to reduce the dimensionality of these document vectors. For dimen-
sion reduction there are also several solutions, which we can broadly classify into two
main approaches: feature selection and feature transformation. The former relies upon
mechanisms that discard non relevant features in some way [5], [6], [9], while the second
one is related to methods using representation in reduced dimension feature spaces, such
as term clustering approaches [10] or Latent Semantic Indexing [11].

This work focuses on the early phase of document representation, deciding which
information from the document is extracted as features. In a step forward to the bag of
words, we study how some of the output data that we can obtain from Natural Language
Processing (NLP) methods can enrich document representation by evaluating a text cat-
egorization problem as a proof of concept.

1. Considering linguistic features

In Natural Language Processing, the document is a source of valuable information re-
lated to the different levels of analysis that can be performed on a given text. Nowadays,
several linguistic tools are available for analyzing our documents content and extracting
lexical and syntactic information, along with emerging and more abstract information at
semantic level. Some of the information that can be considered as available from text
by applying NLP could be the morphological root of word (e.g. construct as replace for
constructed; more examples in table1), a multi-word term (e.g. noun phrases like tropical
plant), the resolution of anaphora (e.g. Sara was playing cards with John and she asked
him to leave could be replaced by Sara was playing cards with John and Sara asked John
to leave), part-of-speech (POS) analysis (e.g. I (Pronoun) told (Verb) you (Pronoun)),
semantic roles, dependency trees as result of shallow parsing, and named entities (e.g.
United Nations as a unique term).

Our hypothesis is that adding data from a higher level of abstraction will enrich our
feature space with additional information whenever this data is related in some way. We
believe this is due to the fact that information derived from base data by more abstracted
reasoning incorporates new information, as that reasoning is performed on heuristics
and knowledge beyond the scope of the problem domain (i.e. the explicit content of the
document). That is, the knowledge behind NLP tools is aggregated to new features and
should, therefore, be exploited by the system.
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original word morphological root stem
communications communication commun
decided decide decid
becoming become becom
bought buy bought

Table 1. Examples of obtained stems and morphological roots

Now the question is: how to incorporate this abstract information, to the Salton’s
Vector Space Model in a blind way? We can find previous research on applying NLP to
fext categorization successfully in the work by Sable, McKeown and Church [12], but
their method is based on a careful consideration and combination of linguistic features.
Our concern is on adding some linguistic features as additional information into a tra-
ditional bag-of-words representation with no further processing. Of course, every possi-
ble combination of linguistic features is not considered here. Our goal is rather to prove
that some of them could lead to certain enhanced versions of document representation.
This assertion argues against some previous related work, like the one by Moschitti and
Basili [13], but is consistent with the conclusions given by Bigert and Knutsson [14]
and Pouliquen et al [15]. In this last work, the authors explored the possible benefits of
incorporating stop-word removal, multi-word detection and lemmatisation, concluding
that these were very limited in the case of multi-word treatment and lemmatization, but
aremarkable one when eliminating stop-words.

Moschitti and Basili’s research [13] incorporates POS tags, noun senses and com-
plex nouns (multi-words) as features for text categorization. These enriched document
Tepresentations have been generated and tested on Reuters-215782, Ohsumed? and 20-
NewsGroups* benchmark collections. They found worthless improvements. We think
that some possible combinations were missing, while in our research such combinations
are studied.

2. Experiments

In this section, the algorithm applied for multi-label classification is introduced along
with the description of the data preparation phase and the results obtained in the designed
experiments.

21. Multi-label classifier system

In the Adaptive Selection of Base Classifiers (ASBC) approach [16] we basically train a
System using the battery strategy (many classifiers working together independently), but
(a), we allow tuning the binary classifier for a given class by a balance factor, and (b)
Wwe provide the possibility of choosing the best of a given set of binary classifiers. To this
end, the algorithm introduces a hyper-parameter a parameter resulting in the algorithm
given in figure 1. This value is a threshold for the minimum performance allowed to a
binary classifier during the validation phase in the learning process, although the class

2htt:p: //www.daviddlewis.com/resources/testcollections/reuters21578/
3http: //trec.nist.gov/data/filtering/
4ht:t:p: //people.csail.mit.edu/jrennie/20Newsgroups/
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still enters into the evaluation computation. If the performance of a certain classifier (e.g.
F1 measure, described in next section) is below the value a, meaning that the classifier
performs badly, we discard the classifier and the class completely. By doing this, we may
decrease the recall sli ghtly (since less classes get trained and assigned), but we potentially
may decrease computational cost, and increase precision. The effect is similar to that of
the SCutFBR [17]. We never attempt to return a positive answer for rare classes. In [16],
it is shown how this filtering saves us considering many classes without important loss
in performance.

Input:
a set of training documents D,
a set of validation documents D,
a threshold a on the evaluation measure
a set of possible label (classes) L,
a set of candidate binary classifiers C
Output :
asetC' ={cy, ..., cy, ..., c|)} of trained
binary classifiers
Pseudo code:
C' 9
for-each /; in L do
T <0
for-each ¢ jin C do
train-classifier(c s biy Dy)
T «TuU {cj}
end-for-each
Chest < best-classifier(T, D,)
if evaluate-classifier(cpes;) > o
CleC i {opey)
end-if
end-for-each

Figure 1. Adaptive Selection of Base Classifiers algorithm

The binary base classifiers selected within our experimental framework have been:
Support Vector Machines (SVM) [2] under its implementation in the SVM-Light pack-
age’, Logistic Bayesian Regression [3] using the BBR software® and the Perceptron
Learning Algorithm with Uneven Margins [18] implemented natively in the TECAT
package (which itself implements the whole ASBC multi-label strategy)’. All base clas-
sifiers have been configured with default values.

3 Available at http://svmlight.joachims. org/
6 Available athttp://www.stat. rutgers.edu/ madigan/BBR/
7Available athttp://sinai.ujaen.es /wiki/index.php/TeCat
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Table 2. Contingency Table for i Category

YES is correct  NO is correct

YES is assigned aj bj
NO is assigned ci d;

.2. Evaluation Measures

The effectiveness of a classifier can be evaluated with several known measures [22]. The
lassical “Precision” and “Recall" for Information Retrieval are adapted to the case of
Automatic Text Categorization. From categorizing test documents using a trained sys-
em, a contingency table is completed (Table 2), and then the precision and recall are
talculated following equations 1 and 2.

ai
B = —— 1
e (1)
a;
R = 2
&.5ora ()

On the other hand, the precision and recall can be combined using the /| measure:

2PR
P+ R

Fi(R, P) = 3)

~ In order to measure the average performance of a system, three measures can
be used: micro-averaged precision P,, macro-averaged precision in a document basis
Pracro—a and macro-averaged precision in a category basis Prpacro—c-

Z,‘K=1 ai

R gl T @)
LK @t
K
o 1 P
Pmacro = Z—;(l— (5)

where K is the number of categories or the number of documents depending on the
basis used.

Recall and F1 measures are computed in a similar way. In our experiments we have
used these measures in order to prove the effectiveness of the studied system.

2.3. Data preparation
The data used was the “ModApte” split of the Reuters-215788 collection, a dataset well

known to the research community devoted to text categorization problems [19]. This
collection contains 9,603 documents in the training set, while the test set is composed

8Prepare:d by David D. Lewis. The collection is freely available from the web page
http://www.research.att.com/~lewis/reuters21578.html
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of 3,299 documents. Each document is assigned to an average of slightly more than 2
classes. Documents contain little more than one hundred words per document.

In order to verify the contribution of the new features, we have combined them
to be included into the vector space model by preprocessing the mentioned collection
through some of the analysis tools available in the GATE architecture® [20]. Thus, we =
have generated enriched collections in the following ways: ' :

1. word (w): a corpus with just plain text without any additional parsing has been
used as base case

2. stem (s): each word has been transformed by applying the classical Porter’s

Stemmer algorithm [21]

. root (r): instead of words, we consider their lexical roots

4. stem+POS (s+p): stems are, in this corpus, attached to their identified Part-Of-

Speech, thus, each feature is a pair stem-POS (represented in our naming con-

vention by a “+” sign)

word+POS (w+p): every word is attached to the associated POS tag

root+POS (r+p): every lexical root is attached to the associated POS tag

7. word-root-stem-pos (w-1-s-p): finally, a corpus every all previous features
are in the document as independent features

(O8]

N
Il

2.4. Results

When evaluating text categorization, micro-averaged measures have been traditionally
chosen as indicators of system quality. In multi-label text categorization we could also
consider the possibility of using two additional indicators: macro-averaged measures by
document and macro-averaged measures by class. These two are totally different and
depending on how we want to apply our system, this choice may be crucial to really un-
derstand the performance of a proposed solution. In this way, macro-averaged precision
by document, for instance, will tell us about how precise the labels are that we assign o
every single document. On the other hand, macro-averaged precision by class will tell
us how precise we are in assigning classes to documents in general. Certain differences
arise since most of the classes are normally seldom assigned to most of the document
(there are many rare classes in real classification systems). Therefore, macro-averaging
by document is an interesting indicator when the system is intended for individual do
ment labeling. Of course, the counterpoint here is that if we are good with most freques
classes, then macro-averaged measurements by document will report good results, hiding
bad behavior on rare classes, even when rare classes may be of higher relevance, singe
they are better discriminators when labels are used for practical matters. In our study
these three evaluation paradigms have been included. §

In tables 3, 4 and 5, F1, precision and recall measurements on all the experiments
run are shown. The best results obtained according to the algorithm used have been high:
lighted in cursive. The results in bold represent the feature combination that reported bes
performance on each algorithm and each of the three evaluation paradigms considered

We can draw some conclusions from these evaluation measurements. The main on
that the winning feature combination turned out to be w-r-s-p. The use of the morpho:
logical root performs better than using stemming in general, although without noticea ble

Il =l I

9 Available at http://gate.ac.uk
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F1 w r r+p s s+p w+p W-r-s-p
SVMavg 0.8211 0.8302 0.8224 0.8283 0.8234 0.8233  0.8358
SVM dAVG  0.8040 0.8212 0.8065 0.8194 0.8060 0.8086  0.8268
SVM cAVG  0.4345 0.4984 04673 0.4979 04979 04637 0.5208
BBRavg 08323 0.8367 0.8358 0.8305 0.8345 0.8323 0.8384
BBR dAVG 0.8323 0.8367 0.8358 0.8305 0.8345 0.8323  0.8384
BBR cAVG 04972 0.5696 0.5201 0.5648 0.5134 0.5046  0.5759
PLAUMavg 0.8337 0.8392 0.8388 0.8323 0.8384 0.8392 0.8412
PLAUM dAVG  0.8238 0.8375 0.8362 0.8253 0.8376 0.8376  0.8392
PLAUM cAVG  0.5323 0.6015 0.5531 0.5842 0.5528 0.5460 0.6126
Table 3. Combined F1 measurements on different algorithms and feature sets

Precision w r r+p s S+p w+p W-r-s-p
SVMavg 09277 09150 0.9226 09147 0.9269 0.9263 0.9212
SVM dAVG 0.8195 0.8364 0.8220 0.8354 0.8219 0.8253  0.8420
SVM cAVG  0.6933 0.7302 0.6997 0.7302 0.7176  0.7034  0.7614
BBRavg 0.9204 08956 0.9068 0.8873 0.9065 09107 0.9022
BBR dAVG  0.8348 0.8450 0.8421 0.8393 0.8400 0.8380  0.8441
BBR cAVG  0.7583  0.7948 0.7594 0.8005 0.7585 0.7420 0.8170
PLAUMavg 0.9142 0.8935 0.8992 0.9014 0.8959 0.9016 0.8937
PLAUM dAVG  0.8368 0.8469 0.8472 0.8366 0.8474 0.8477 0.8476
PLAUM cAVG  0.7532 0.7997 0.7804 0.8008 0.7718 0.7679  0.8139
Table 4. Combined precision measurements on different algorithms and feature sets

Recall w r r+p s s+p w+p W-r-s-p
SVMavg 0.7364 0.7598 0.7418 0.7569 0.7407 0.7410  0.7650
SVM dAVG 0.8033 0.8223 0.8064 0.8199 0.8050 0.8075  0.8277
SVM cAVG  0.3448 04113 03777 0.4097 0.3783 0.3707  0.4280
BBRavg 0.7596 0.7851 0.7752 0.7806 0.7730 0.7663  0.7830
BBRdAVG  0.8228 0.8444 0.8362 0.8396 0.8337 0.8302 0.8413
BBR cAVG  0.3996 04800 04301 04766 04234 04122 0.4848
PLAUMavg 07663 0.7911 0.7860 0.7730 0.7878 0.7849  0.7946
PLAUM dAVG  0.8279 0.8458 0.8440 0.8307 0.8466 0.8447 0.8477
PLAUM cAVG  0.4412 0.5220 0.4691 0.4999 0.4676 0.4598  0.5359
Table 5. Combined recall measurements on different algorithms and feature sets

ormance differences. This can explain why people still apply stemming algorithms,
hich are easier to implement. Categorization results do not seem to improve when us-
ng stems and roots as replacement for words without morphological normalization, al-
lough they are useful to reduce the feature space. On the other side, when combined,
ategorization performance improves. This makes us think that there exist synergistic
ependencies among them.

In order to validate these observations, statistical significance has been computed
applying a two-tailored Wilcoxon test on the obtained results. This test is the non-
parametric equivalent of the paired samples 7-fest. This implies the assumption that both
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distributions are symmetrical, in which case the mean and medians are identical. Thus,
the null hypothesis (usually represented by Hp) considers that for the two distributions
the median difference is zero.

Distributions have been generated for each feature combination and for each evaly-
ation measure. Thus, at each evaluation measure we have 60 values (3 algorithms m
tiplied by 30, the measurements obtained for the 30 most frequent categories). In tables
6,7, 8 we have the p-values obtained using the two-tailored signed rank test (Wilcoxg
test) comparing each possible pair of feature combinations. Values related to statistically
significant differences are shown in bold (i.e. those p-values below 0.05).

Precision w r s

Ww+p r+p S+p W-T-§-p
w 0.50000000 0.99975792 0.99999722 0.99795972 0.99996494 0.99871684 0.99879193

r 0.00024208 0.50000000 0.99120325 0.00191301 0.21569861 0.08772633 0.28198043

s 0.00000278 0.00879675 0.50000000 0.00025781 0.02299721 0.01308712 0.01383293

Ww+p 0.00204028 0.99808699 0.99974219 0.50000000 0.94710365 0.78149820 0.97230034
r+p 0.00003506 0.78430139 0.97700279 0.05289635 0.50000000 0.01874444 0.58880332
s+p 0.00128316 0.91227367 0.98691288 0.21850180 0.98125556 0.50000000 0.83800353
W-r-s-p 0.00120807 0.71801957 0.98616707 0.02769966 0.41119668 0.16199647 0.50000000
Table 6. Two-tailored Wilcoxon test over Precision

Recall w r s w+p r+p s+p W-I-$-p

w 0.50000000  0.00000004 0.00000041 0.03389618 0.00003132  0.00013093 0.0000000001

r 0.99999996  0.50000000 0.69496983 0.99999625 0.99945972 0.99992046 0.21925151

s 0.99999959 0.30503017 0.50000000 0.99998501 0.99785479 0.99985558 0.07531379

W+p 0.96610382 0.00000375  0.00001499 0.50000000 0.00019374 0.00856058 0.00000009
r+p 0.99996868 0.00054028 0.00214521 0.99980626 0.50000000 0.59073375 0.00002613
S+p 0.99986907 0.00007954 0.00014442 0.99143942 0.40926625 0.50000000 0.00000146
W-I-S-p 1.00000000 0.78074849 0.92468621 0.99999991 0.99997387 0.99999854 0.50000000
Table 7. Two-tailored Wilcoxon test over Recall

Fl w r s W+p r+p s+p W-I-S-p

w 0.50000000 0.00005713 0.00071825 0.30361848 0.00924403 0.00698185 0.00000046

r 0.99994287 0.50000000 0.95565518 0.99969308 0.99808699 0.99932684 (. 16276175

s 0.99928175 0.04434482 0.50000000 0.99728397 0.98571432 0.99709336 0.0127459)

W+p 0.69638152 0.00030692 0.00271603 0.50000000 0.00760854 0.01334894 0.00000191 )
r+p 0.99075597 0.00191301 0.01428568 0.99239146 0.50000000 0.29375643 0.00016408
s+p 0.99301815 0.00067316 0.00290664 0.98665106 0.70624357 0.50000000 0.00002037
W-r-S-p 0.99999954 0.83723825 0.98725410 0.99999809 0.99983592 0.99997963 0.50000000
Table 8. Two-tailored Wilcoxon test over F1

Regarding precision, the use of the original text without processing is the best optig
But in terms of recall and F1, root and stem features may be preferred. Although rog
and w-r-s-p combination show similar results, from the p-value of the second one oy

the first one, we can observe that w-r-s-p is close to overperform root with Statistical
significance.

-
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Conclusions and future work

ir results show that certain linguistic features improve the categorizer’s performance,
least on Reuters-21578. A text classification system shows many degrees of freedom
different tuning parameters), and small variations can produce big deviations, but from
: results above, it is clear that for any of the algorithms selected and on any of the eval-
ation paradigms, the feature combination word-root-stem-pos produces better results,
it with small improvements compared to the other feature combinations, like morpho-
gical root, according to the F1 measure.

Though the gain in precision and recall is not impressive, we believe that further
search has to be carried out in this direction, and we plan to study different integration
frategies, also considering additional features like named entities, term lists and addi-
bnal combinations of all these features in the aim of finding more synergy. Also, the
ipact of such information may be higher for full texts than short fragments of Reuters-
1578 texts. Collections like the HEP [23] or the JRC-Acquis [24] corpora will be used
0analyze this possibility.

At this final point, we would like to underline relevant issues regarding the usage
it linguistic features that should also be studied. Some languages (Slavonic languages
id Finno-Ugric) are more highly inflected, i.e. there are more variations for the same
emma than, for example, in English. Another important issue is the trade-off between
ossible errors in the generation of these features by the linguistic tools used and the
enefit that their inclusion can produce on the final document representation. Word sense
isambiguation may introduce more noise into our data. Also, the stemming algorithm,
2y perform badly in texts of specialized domains and may harm the final categorization
esults. Finally, the size of the collection, the length of the document and other charac-
fistics of the data can determine whether the inclusion of certain features is useful or

0t. Therefore, many questions remain open and the research community still has work
do on this topic.
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